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A platform for Human Bot collaboration
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Do it yourself Cloud native Powered by Enterprise Pay-as-you-go Unlimited Bot
automation platform Deep-learning grade security pricing & Users

Let humans do what they do best. For everything else, there is a bot
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Large Scale Models

Found on Internet

Al Adoption
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Large Scale Models
Highlights

Size of the Model
Billions of Parameters

In terms of space and compute
Super Computers Needed
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How much Information is the
Machine Given during Learning?
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The machine predicts a scalar reward

given once in a while.
» A fewbits for somesamples

The machine predicts a category or a few
numbers for each input

» Predicting human-supplieddata

+ 10—10,000 bits per sample

The machine predicts any part of its input
for any observed part.

» Predicts future frames in videos

» Millions of bits per sample
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Self-Supervised Learning

In general, withhold some part of the data, and task
the network with predicting it

The task defines a proxy loss, and the network is
forced tolearn what we really care about.
E.g. a semantic representation, in order to solve it

Predict everything from everything else
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Pretext Tasks

The pretext tasks and pseudo labels share two common
properties:

Pseudo labels for the pretext task can be automatically
generated based on the attributes of images or videos.
(Without any human supervision.)

Visual features of images or videos need to be captured by
ConvNets to solve the pretext tasks.
(Solving the task is equivalent to learning the feature.)

Courtesy: Andrew Zisserman's talk at CVPR 20189 REVA Academy for Corporate Excelle



Self-Supervised Learning
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of Video

Video is a temporal sequence of frames

What can we define as a proxy loss?

Courtesy :

Nearby(in time) frames are strongly correlated, further away may not be
Temporal order of the frames

Motion of objects (via optical flow)

Temporal coherence of objects their colors, their shapes, ...

Alexel Efros's talk at ICML 20189 REVA Academy for Corporate Excellence - RACE

race.reva.eau.1n
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Autoencoder: Self-Supervision as

Data Compression (Hinton 2009)

£

Courtesy: Alexei Efros's talk at ICML 2019
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Self-Supervised Learning

Data Prediction

Transformation
Prediction

Meta-supervision

Courtesy : Alexel Efros's talk at ICML 2019
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as Data Prediction

X,

Some Data Other Data

Courtesy : Alexel Efros's talk at ICML 2019 REVA Academy [or Corporale Excellence - RACE
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Attention 1s all you need

Self-attention is a sequence-to-
sequence operation: a sequence of
vectors goes in, and a sequence of
vectors comes out. Let's call the input
vectors x1, x2,..., xt, and the
corresponding output

vectors vl, v2,..., yt. The vectors all
have dimension k. To produce output
vector y;, the self-attention operation
simply takes a weighted average over
all the input vectors, the simplest
option 1s the dot product.
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Attention dot product

query, key value
q; = qui k; = Wix; v; = W, x4
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Basic self attention
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ARM
Autoregressive Models
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Reinforcement Learning from
Human Feedback (RLHF)

Training a Helpful and Harmless Assistant with
Reinforcement Learning from Human Feedback
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.| CHATBOT

Reinforcement Learning from
Human Feedback (RLHF)

" Pretrained ™ Preference Modal Human-Feedback ¢ Preference ™
L J Pratraining (PMF) ? Fine-Tuning . Model

| Human-Fesdback
Cormparksan
Data

HHH promgt s . y RLHF
contex distillation . Dy AR  Policies

Human Feedback Interface

Courtesy: Training a Helpful and Harmless Assistant with REVA Academy for Corporate Excellence - RACE
Reinforcement Learning from Human Feedback race.reva.edu.in
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OpenAl

GPT series

new Al system that can create realistic images and art from a description in natural language.

excels 1s in understanding the intent of text.

For applications requiring deep understanding of the content, like summarization for a specific
audience and creative content generation

Use for: Complex intent, cause and effect, summarization for audience




Microsoft OpenAl partnership

Naming convention

Azure OpenAl's model names typically correspond to the following standard naming
convention:

{family}-{capability}[-{input-type}]-{identifier}

Element Description

{family} The model family of the model. For example, GPT-3 models uses text, while
Codex models use code.

{capability} The relative capability of the model. For example, GPT-3 models include ada,
babbage, curie, and davinci.

{input-type} (Embeddings models only) The input type of the embedding supported by the
maodel. For example, text search embedding models support doc and query.

{identifier} The version identifier of the model.

For example, our most powerful GPT-3 model is called text-davinci-083, while our
most powerful Codex madel is called code-davinci-0e2.

Courtesy: https//learn. microsoft. com/en-us/azure/cognitive-
services/openai/concepts/models
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REVA Academy for Corporate Excellence - RACE
race revaedu.in
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Microsoft

Bing vs Google Search

[ think every app
1S going to be an Al app.

— Satya Nadella

With power fueled by GPT and other
latest Al advancements mostly in
Generative Al



GPT -1

Improving Language Understanding by
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12% —

Text & Position Embed

Courtesy: https://cdn openal comm/research-covers/language-
unsupervised/language_understanding_paper. pdf

Generative Pre-training

Classification | Stan |  Text |Enm|}>|hmhrnmrHUrnem|

Entailment | Stan | Premise | Delm IHypnﬂm‘Ja|Emm|—>|TmnﬂnﬂnhrH Linear |
san | Textl | Deim | Text2 |Enm|-+|_ﬁm5hﬂmr

Similariy : ®
| san | Tet2 | peim | Tea1 | ewact |+ Transformer
| sun | Comext | peim | Answer1 [mmHmmhrmarHumar

Multiple Choice [ stan | Context | eim | Answer2 | Exvact ||| Franstormer || Linear
| san | Context

| Deim | Answer N |Enm|-{1'mnm}-|unem

Figure 1: (left) Transformer architecture and training objectives used in this work. (right) Input
transformations for fine-tuning on different tasks. We convert all structured inputs into token
sequences to be processed by our pre-trained model, followed by a linear+softmax layer.

REVA Academy for Corporate Excellence - RACE
race reva.edu.in
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Language_models_are_unsupervised_
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multitask_learners.

Reading Comprehension Translation Summarization - Question Answering
B |
90 {Human 55 (Unsupervised Statistical MT 32 {Lead-3
80 = 30 8 1 TOpen Domain QA SystemsT 1
20 1 ~ 28 PGNet
70 DrQA+PGNet o
riA+ e o~
» ¥ 5 15 |Denoising + Backtranslate a2 F ©
— 1 -+ o E
- DrQA 2 - 24 {Seq2seq + Attn g ol
50 10 [Embed Nearest Neighbor Y 22 <
i PGNet Denoising E . Random-3-
54 Z 2
30 18 -most freq Q-type answer
. B ------5eq2seq| 0 e ] 16 e | o - — .
117M 345M 762M  1542M ll?’M 345M 762M  1542M117M 345M 7e2M  1542M117M 345M 762M  1542M
# of parameters in LM # of parameters in LM # of parameters in LM # of parameters in LM
Courtesy: https://cdn.openal. com/better-language- REVA Academy for Corporate Excellence - RACE

models/language_models_are_unsupervised_multitask_learners.pdf race.reva.edu.1in
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Zero-shot One-shot Few-shot

g 175B Params
Matural Language o

Prampt -

i

Accuracy (%)

30 / o Mo Prompl

/ 13B Params

— e 1,3B Params

0 10° 10
Number of Examples in Context (K)

Figure 1.2: Larger models make increasingly efficient use of in-context information. We show in-context learning
performance on a simple task requiring the model to remove random symbols from a word, both with and without a
natural language task description (see Sec. 3.9.2). The steeper “in-context learning curves” for large models demonstrate

improved ability to learn a task from contextual information. We see qualitatively similar behavior across a wide range
of tasks.
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Mesh Transformer JAX

JAX 1s Autograd and XLA, brought together for high-performance
machine learning research.

Implementation of model & data-parallel

compute generously provided by the TPU Research Cloud with
assistance from EleutherAl

A 6 billion parameter, autoregressive text generation model trained
on The Pile

Autograd can automatically differentiate native Python and
Numpy code.

XLA - Accelerated Linear Algebra.

Courtesy: https;//github.com/kingoflolz/mesh-transformer-jax REVA Academy for Corporate Excellence - RACE
race revaedu.in
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RoBERTa — optimization of parameters to BERT setting

Focused on Metaverse

ChatGPT is 'not particularly innovative,'
and 'nothing revolutionary', says Meta's

chief Al scientist

Courtesy: https//www.zdnet.com/article/chatgpt-is-not-particularly-innovative-and-
nothing-revolutionary-says-metas-chief-ai-scientist/




Amazon
AlexaTM20B

AlexaTM 20E 1s a 20B-Parameter sequence-to-sequence
transformer model created by the Alexa Teacher Model
(AlexaTM) team at Amazon. The model was trained on a
mixture of Common Crawl (mC4) and Wikipedia data
across 12 languages using denoising and Causal
Language Modeling (CLM) tasks.

AlexaTM 20B can be used for in-context learning. "In-
contextlearning,” also known as "prompting,”referstoa
method for using NLP models in which no fine tuning is

required per task.

Training examples are provided to the model only as part
of the prompt given as inference input, a paradigm
known as "few-shot in-context learning.” In some cases,
the model can perform well without any training data at
all, a paradigm known as "zero-shot in-context
learning.”

" "
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........
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ERNIE-VILG

Specific Tasks

Text Similarity Question Answering Sentiment Analysis - Natural Language Inference
Fine-tuning Inference
Continual Pre-Training 5
Sequentially Sequentially .
. Taskn . o - Task2 - - Taskl - :
Pre-training Tasks Construction Sequential Multi-task learning |
Task1
Task 1 Task 2 Task3 ..., Taskn ~— |
ERNIE Task1 m Task2 .
+ 1
Model Taskl = Task2 = Task3 |
1 ‘_’ :
— ' - ¥ |
o ' ; Big Data Prior Knowledge Task1 m Task2 m Task3 » =T
Courtesy: ERNIE 2.0: A Continual Pre-Training Framework for Language Understanding REVA Academy for Corporate Excellence - RACE
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ChatGPT - pretext Process

PRETRAIN

END OF PRETRAIN

Pretrain: Train a GPT model
(decoder) that can predict future

After the pre-training stage,
the model can complete given

words that 1s grammatically sentences, but it is not capable 4 2 )
correct and semantically of responding to questions. AT
meaningful ' /U\
\ _ /

Courtesy: Bytebytego.com
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How 1s ChatGPT trained

i i

- Parameters:1775B
- Training tokens:300B :
. Vocab size: ~50K

Complete the
input sentence u_
>

Stage 1: u_ :
el ; two plus two is
Pre-training

equal to four.

..............................................................................................

Internet data(300B tokens)

optimize using

- collect data train a reinforcement learning
. ¢ and fine-tune reward model (PPO algorithm)
Stage 2: Finetuned Reward _yi ChatGPT
- - GPT 3.5 i
Fine-tuning model : Model
PPO :
L A

Courtesy: Bytebytego.com
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Working of chatGPT NIVERSITY

@ Answer a prompt

a new prompt
LeetCode: longest common string
1

[ Content moderation l

Safe? a.N

ChatGPT Model |—-[ Generate response ]
¢

[ Content moderation J

L

Template response generation J
longest commeon string iz the Sorry,| am not tralned to provide
problem of... medical advisa,

Responsa




GPT-Image

2 (a) Autoregressive
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respectively, on ImageNet.

Courtesy: Generative Pretraining [rom Pixels

(b) BERT
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3 ia) Linear Probe

1GPT-S, 1GPT-M, and 1GPT-L, transformers containing 76M, 455M, and 1.4B parameters

1GPT-XL , a 6.8 billion parameter transformer, on a mix of ImageNet and images from the web.

REVA Academy [or Corporate Excellence - RACE

race revaedu.in
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EVALUATION DATASET OUR RESULT BEST NON-iGPT RESULT
Logistic CIFAR-10 96.3 iGPT-L 32x32w/ 95.3 SimCLRZ w/
regression on 1536 features 8192 features
learned CIFAR-100  82.8 iGPT-L 32x32w/ 80.2 SimCLR w/ 8192
features 1536 features features
(linear probe)
STL-10 95.5 iGPT-L 32x32w/ 94.2 AMDIM?IS w/
1536 features 8192 features
ImageNet 72.0 iGPT-XL? 64x64 76.5 SimCLR w/ 8192
w/ 15360 features
features
Full fine-tune CIFAR-10 99.0 iGPT-L 32x32,  99.0° GPipe,° trained
trained on on ImageNet
ImageNet
ImageNet 66.5 IGPT-L 32x32 70.2 Isometric
32x32 Nets1®

Courtesy: https://openal com/blog/image-gpt/ REVA Academy for Corporate Excellence - RACE
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: Adoption

Pros

Unfolding use-cases of
Al adoption
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What Next
(Customizable Al

Ready to Use Al
What Dall-E and Chat GPT are Als enable anyone to benefit

Ready to plug Al
Like Yolo Object Detection (Model available through a API)

It i1s hard to see in Healthcare, supply chain data it is hard to
see one model fitting all

Are you part of this Al democratization shaping in the
industry?

Courtesy: Jennifer CED, Alectio
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Marketing Fraternity

Inspire ad copy or subject line versions (about one in
five are somewhat on target).

Create thought leadership content (provides some
good 1deas and direction).

Supplement or enhance job postings (came up with
some stuff that help round out a job rec).

Write alternate code versions (surprisingly good).

Power website chatbots (still testing, but this should be
a layup).

But it's something marketers are paying attention to.

https://martech.org/when-i-asked-chatgpt-to-write-an-article-about-chatgpt/



Improvement in
Customer Experience

» Expectmuch experimentation in 2023 and new products
emerging to add business value to ChatGPT.

» how support agents respond to consumers, either using
automated bots or quickly getting an answer by leveraging
ChatGPT on their own dataset

* Companies that adopt these models to improve their
existing chatbot's ability to recognize and respond to
emotions In interactions and other capabilities will be well-
positioned to provide improved customer support and
experience

« Current developments are just the tipping point for adopting
web chat solutions with generative Al abilities.

» These will be ubiquitous across B2E and B2C

Courtesy: https://venturebeat com/ai/chatgpt-and-llm-based-
chatbots-set-to-improve-customer-experience/

&
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Unfolding use-cases of Al adoption -




_Stanford use-case

Chat GPT - to complete
assignments and exams

The Stanford Daitly
ChatGPT Use in Fall Quarter 2022 Finals

Did you use ChatGPT on any fall quarter final assignments or exams?

Yes @Mo

REVA
UNIVERSITY

Bengaluru, India
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Al Plagarism
No end to it

ChatGPT 1s not yet at a tool
that can run without close
supervision.

s i
= ’-,,-"'

YOU'RE-MAKING,
A HUGEMISTAKE"

Q willdraperandco | F oo .
Yaur making a HUGE mistake with ChatGPT ga : - >
Origirsal sudic  will § Raleigh, Morth
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POLICY TECH / LAW

Microsoft, GitHub, and OpenAl ask court
to throw out Al copyright lawsuit

ARt P <7 / The three companies want to

; dismiss a complaint that alleges
that the Al-powered Copilot relies
on ‘software piracy on an
unprecedented scale.’

o
_______

By EMMA ROTH

v f
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. Hi everyone, 1

We cordially invite you to join us for an upcoming free webinar on the topic of Self-
Supervised Learning (SSL) and its potential for large-scale Al adoption.

Our esteemed speaker, Dr Sai Hareesh, will dive into the use cases of S5L, specifically
highlighting its implementation in ChatGPT models.

The free webinar will take place on February 19, 2023, at 12:00 PM IST. To Register for the
event, please follow the link:

- hitps://bit.ly/3¥YmKPmj -

Upon successful registration, you will receive a confirmation email with instructions on
how to join the webinar.

We look forward to your participation and engagement in this informative session.

Thank you for the invitation. As a language model developed by OpenAl, | am unable to
attend the webinar in a physical sense. However, | would be happy to answer any
guestions you may have about Self-Supervised Learning (SSL) and its potential for large-

REVA Academy for Corporate Excellence - RACE

race.reva.eau.1n
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. Can you talk about sai hareesh's talk on self supervised learning on youtube

I'm sorry, but | am not aware of any specific talk by Dr. Sai Hareesh on Self-Supervised
Learning (SSL) on YouTube. As a language model, | do not have access to current or
future events unless they have taken place and been recorded and publicly available at my

knowledge cutoff of 2021. If you have a specific guestion about SSL or

Local context from Global context is taken care by finetuning to your subsystem
PAST. PRESENT. FUTURE. - > Predictpresentfrom pastor futurefrom presentis a predictive analytics

GPT 1s a good first step towards -> Preventive analytics, especially incyber security and health care

BREVA Academy for Corporate Excellence - RACE

[BCE I'eva. eduIn



Open source
solution replicates
ChatGPT training
process! Ready to go
with only 1.6GB GPU
memory and gives
you 7.73 times faster
training!

Step1

Collect demonstration data
and train a supervised policy.

A prompt is
sampled from our
prompt dataset,

A labeler
demonstrates the
desired output
behavior,

This data is used to
fine-tune GPT-35
with supervised
learning.

r‘\
.
Explain reinforcement

learning to & G year obd.

|

®

4

Wa give ireats and

punishrments to teach...

|
Y

SFT
v
BREE

Step 2

Collect comparison data and
train a reward model.

A prompt and
several model
outputs are
sampled.,

A labeler ranks the
outputs from best
to worst.

This data is used
to train our
reward model,

%,

o
o
Explain reinforcemeant
learning toa & year old,

0 2]

Lol e

S - pem . el
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Step 3

Bengaluru, India

Optimize a policy against the
reward model using the PPO
reinforcement learning algorithm.

A new prompt is
sampled from
the dataset.

The PPO model is
initialized from the
supervised policy.

The policy generates

an output.

The reward model
calculates a reward
for the output,

The reward is used
to update the
policy using PPQ.

e

Write a story
about otters.
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Explanability 1s always
our Responsibility

« Whom will be responsible if chat GPT gives
out sensitive information

« Al adoption will definitely improve but be
used with caution

» Needs to explain causality -> what caused
this response

REVA Academy [or Corporate Excellence - RACE

[BCE I'eva enuIn
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Not on Internet
Food for thought

Converting one form of GPT to other

« For example Image GPT data
synthesized into a Chat GPT or
summary what the image conveys

Always the use-cases are looking at
the same modality till now,

« Integrated system

« Use-cases:
can create Instagram
memes/reels easily
« Al for storytelling
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To know more
about our Programs,
Please contact

+91 89040 58866
+01 95388 74441 | +91 76250 69676
+91 99025 46881 | +91 99453 95881

For Research and
Consulting opportunities, please contact

Dr. Shinu Abhi

Director, Corporate Training
REVA Academy for Corporate Excellence (RACE)
P: +9199729 16030

E: shinuabhi@reva.edu.in
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